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Abstract

The usual equation for the converging wave method [P. Cielo, L.A. Utracki, M. Lamontagne, Thermal diffusivity

measurements by the converging thermal-wave technique, Canad. J. Phys. 64 (1986) 1172–1177] for thermal diffusivity

measurements assumes idealised conditions that are difficult to achieve in a real experimental situation and this hinders

the extraction of diffusivity values. A model for thermal transport is described here that takes into account errors due to

heat losses and is relatively insensitive to detection position inaccuracy. A simple polynomial equation is derived from

the model and it is used to generate initial guesses for the Levenberg–Marquardt algorithm, which uses these initial

guesses to avoid a local minimum problem and ultimately produces a value for radial thermal diffusivity.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The converging wave technique developed by Cielo

et al. [1] is a development of the Parker method [2–4],

which measures the radial thermal diffusivity of solids.

The flash method of Parker is one of the most reliable

methods of measuring thermal diffusivity. However, it

is limited to measuring diffusivity in the direction per-

pendicular to the plane, of relatively thin, planar sam-

ples. In the Cielo method, a planar sample is subjected

to a very short pulse of annular shaped radiant energy
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from a laser and the resulting temperature rise at the

centre is determined using an IR detector. By recording

the time resolved temperature, thermal diffusivity values

can be derived. The geometry allows diffusivity to be

measured parallel to the plane, for samples of potentially

any thickness.

The use of the converging thermal wave analysis to

determine radial thermal diffusivity has been described

by current literature [1,5–7]. However it can only be ap-

plied under adiabatic and ideal experimental conditions

that are difficult to fulfil in practice. Two of the funda-

mental assumptions are centre-point detection and that

there is no heat loss by radiation and convection. In a

similar study the sample was placed in a vacuum in

order to eliminate convection loss [8]. In reality there

may well be an error in the centring of the system. In

addition this study shows that heat loss mechanisms,
ed.
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Nomenclature

c specific heat

F radiating surface of body

H coefficient of convective surface heat

transfer

I0 Modified Bessel function of order zero

r off centre distance

r 0 radius of the annulus

t time

T temperature

T0 ambient temperature

Greek symbols

a thermal diffusivity

e emissivity

m heat loss term

q density

r Stefan–Boltzmann constant

Qqc energy absorbed by the sample
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particularly radiation, must be taken into account if a

good match between theory and experiment is to be

made.

Data reduction methods play a significant role in

determination of the thermal diffusivity. In the original

paper published by Cielo, based on the converging wave

technique, only the time at maximum temperature or the

time at half the maximum temperature is taken from the

measured temperature versus time curve and used to cal-

culate the thermal diffusivity. In a paper written by Kim

et al. [5] the times at which the curve reaches a certain

equal temperature, in the ascending and descending tem-

perature evolution curve, t1 and t2, say, were used to

determine the thermal diffusivity. Using the Kim method

it was necessary to know the material being measured in

advance because the amplitude at which t1 and t2 are

taken is subject to the type of material being measured.

Kim�s method was a good test to see if the experimental
data for a known sample produced results that were

within an acceptable range of quoted values in literature,

but for unknown samples the choice of amplitude may

be difficult to ascertain. In addition both methods do

not use the whole dataset of experimental results partic-

ularly where departures from the idealised conditions

become apparent. The progress in computers over the

last number of years has ensured that curve-fitting algo-

rithms can use all data points simultaneously to extract

the required parameters. This ensures that non-linear

curve fitting routines can be used on converging wave

data on realistic timescales. In general it has been
Table 1

Results on three well-characterised materials, compared with referenc

Material Thermal diffusivity · 10�5m2s�1

Reference—CRC [18] Measured

radial

A

a

Copper 11.625 11.71 1

Aluminium 9.538 9.49 1

Zinc 4.187 4.07 3
written, ‘‘The theoretical and numerical analysis required

for obtaining thermal diffusivity are one of the challenges

of the photothermal radiometry technique for arbitrary

specimen shapes and heating beam geometries’’ [9].

This paper develops the mathematical formulism that

is necessary for describing real data in the converging

wave method by taking account of heat loss and errors

in centring. This is then used in a curve-fitting method

on the experimental data and the results found for this

method correlate very well with values found in the lit-

erature for various materials (see Table 1). The model

equation used in the curve-fitting process has been devel-

oped so it can account for non-adiabatic conditions and

it can also account for centring limitations based on the

detectors used in the experiment. The mathematical

model still assumes that an instantaneous heat pulse is

absorbed in a very thin layer of the sample and the laser

beam impinging on the sample has a uniform annular

shape. These approximations are shown to be valid in

our measurements.

To guarantee good measurements it is very important

to accurately measure the annular radius. This is

achieved using a software technique whereby a CCD

camera captures an arc of the annulus. To find the med-

ian ring of the annulus, image-processing algorithms are

applied. The data provided from these algorithms pro-

vide the coordinates for the arc. This data is then imple-

mented into a multiple linear regression algorithm to

ultimately determine the centre point and the mean

radius of the annulus.
e values and the conventional laser flash technique

greement radial

nd ref (%)

Measured laser

flash

Agreement radial

and flash (%)

11.60 1

8.93 6

4.38 8
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The same samples were measured using a version of

Parker�s flash method described elsewhere [10–12], and

the results got by this method also compare well with

those obtained using the radial method and curve-fitting

procedure [Table 1].
2. Mathematical theory

The ideal model [1] is based on the behaviour of a

homogeneous, thermally insulated, infinite slab with an

instantaneous heat source uniformly applied over the

front surface of the sample. A typical experimental con-

figuration is shown in Fig. 1 where a short pulse laser

(typically < 10ns) impinges on the sample. The beam is

shaped into an annulus and an infrared detector mea-

sures the thermal signature on the back surface of the

sample at the centre. The temperature rise found at the

back surface of a sample is less that 10K. This ensures

that the infrared detector taking measurements has an

error, of less than 0.5% when extracting thermal diffusiv-

ity for the laser flash method. This is mainly due to a

small non-linearity given by Planck�s law [13,14].

The partial differential equation that is used to de-

scribe the converging wave technique mathematically is

developed from the equation for an instantaneous point

source of heat, that is, a finite quantity of heat liberated

at a given point (x 0,y 0,z 0).

Therefore the PDE for the conduction of heat from a

point source to a location (x,y,z) can be written as [15]:

o
2T
ox2

þ o
2T
oy2

þ o
2T
oz2

¼ 1

a
oT
ot

ð1Þ

and is satisfied by,
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Fig. 1. Experimental configuration for th
T ¼ Q

ð4patÞ3=2
exp �ðx� x0Þ2 þ ðy � y0Þ2 þ ðz� z0Þ2

4at

" #

ð2Þ

The heat liberated is Qqc.
Samples on which measurements were performed

were metal foils, which were sufficiently thin to approx-

imate to a two dimensional case [16]. For a two-dimen-

sional sample, in the xy-plane, the following holds:

o
2T
ox2

þ o
2T
oy2

¼ 1

a
oT
ot

ð3Þ

and the solution which describes the temperature at a

point (x,y) due to a point source at (x 0,y 0) is

T ¼ Q
ð4patÞ exp �ðx� x0Þ2 þ ðy � y0Þ2

4at

" #
ð4Þ
2.1. Derivation of the heat loss term

The heat loss term is a very significant factor in terms

of non-ideal departures from the ideal equation. A

mathematical derivation of heat losses in the experiment

is based on a combination of convective and radiative

heat losses (Fig. 2), which are described by Newton�s
law of cooling and the Stefan–Boltzmann expression

respectively. Addition of the heat loss term in Eq. (1)

is achieved by examining the Stefan–Boltzmann expres-

sion and Newton�s law of cooling as a linear component

to the P.D.E equation.

The Stefan–Boltzmann expression can be simplified

since the temperature rises only a few degrees above

ambient at the centre of the annulus, i.e. T � T0 is small.
X

Y

e

MCT 
detector

Pre-amp

oscilloscope 
+   
computer

e radial thermal diffusivity set-up.



Fig. 3. Describes the geometry of the off-centre component on

the ring.

Heat losses 

Sample 

Fig. 2. Shows the heat losses from the surface of the sample.
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This physical phenomenon mathematically reduces the

Stefan–Boltzmann expression into a linear component

by using the Taylor expansion and simplifying. Eq. (5)

shows the simplification of the expression.

Radiative heat loss ¼ reF ðT 4 � T 4
0Þ

� 4reFT 3
0ðT � T 0Þ ð5Þ

Newton�s law of cooling is used to describe heat loss due

to forced convection as

Convective heat loss ¼ HðT � T 0Þ ð6Þ

Since Newton�s law of cooling has a linear component,

both heat loss terms can be combined as in Eq. (7). Total

losses are

4reFT 3
0ðT � T 0Þ þ HðT � T 0Þ

¼ mðT � T 0Þ where v ¼ H þ 4reFT 3
0 ð7Þ

The heat loss term can be added to the PDE equation (1)

and is written as:

o
2T
ox2

þ o
2T
oy2

þ o
2T
oz2

¼ 1

a
oT
ot

þ vðT � T 0Þ
� �

ð8Þ

It can be shown [17] that Eq. (9) is a solution to Eq. (8).

T ðtÞ ¼ Q

ð4patÞ3=2
exp � x2 þ y2 þ z2

4at

� �
exp½�vt	 þ T 0 ð9Þ

Since the actual temperature is not measured, and only

the change in the blackbody signal due to the heat

source is recorded, ambient temperature, T0, can be

given the value zero.

2.2. Combining the mathematical expression for heat

losses and off-centre detection

The solution for the point source is a key feature for

the ultimate mathematical formulism required for the

converging wave technique, which can be developed

from this. From this solution of the point source the

geometry for the annular laser heat source can be gener-

ated. The mathematical geometry for the ring source is

found by first converting the Cartesian coordinates to

polar for the point source. This can be described math-

ematically by the cosine rule (Eq. (10), see Fig. 3). An off
centre component, r, is then included in the polar coor-

dinate description.

R2 ¼ ðx� x0Þ2 þ ðy � y0Þ2

¼ r2 þ r02 � 2rr0 cosðh � h0Þ ð10Þ

To create an instantaneous ring heat source, point

sources of strength Qr 0dh 0 are distributed around the cir-

cle r = r 0. The temperature at time t at the point whose

polar coordinates are (r,h) is

Qr0

ð4patÞ3=2
Z 2p

0

exp � r2 þ z2 þ r02 � 2rr0 cosðh � h0Þ
4at

� ��


 exp½�mt	
	
dh0

¼ Q0

ð4patÞ3=2
exp � r2 þ r02 þ z2

4at

� �
exp½�mt	I0

rr0

2at

� �

ð11Þ

where Q 0 = 2pr 0Q, and the total quantity of heat ab-

sorbed by the sample is Q 0qc. I0 is the modified Bessel

function of order zero. Eq. (11) describes the case for

a continuous ring source with heat losses and there is

also an extra parameter r included which describes the

off-centre detection. This equation can be simplified if

detection is perfectly centred i.e. if the off centre distance

was equal to zero and this approximation has been made

previously [1,5–7]. But in reality, some off-centre detec-

tion is difficult to avoid.

For a thin sample, heat-flow can be assumed to be

overwhelmingly two-dimensional and can be described

by the mathematical extreme of heat flow in the xy-

plane. The expression then becomes

T ¼ Q0

ð4patÞ exp � r2 þ r02

4at

� �
exp½�mt	I0

rr0

2at

� �
ð12Þ

Other geometrical sources of error are the finite detec-

tion area and the finite thickness of the heat source.



F. Murphy et al. / International Journal of Heat and Mass Transfer 48 (2005) 1395–1402 1399
The expression as derived describes the temperature at a

single point near the centre of a ring of infinitesimally

small point sources. Previously it has been assumed that

if the detection area and source thickness are less than

about one tenth of the source radius, they have a negli-

gible effect on the thermal transient [7]. Finite element

models were generated with non-zero source and detec-

tion areas and found to agree with this.

Eq. (12) can be simplified using the coefficients A, B

and C:

A ¼ Q0

4pa
, B ¼ r2 þ r02

4a
, C ¼ rr0

2a

and it is rewritten as:

T ðtÞ ¼ A
t
exp �B

t

� �
exp½�vt	I0

C
t

� �
ð13Þ

In summary, Eq. (13) is used to account for heat losses

in the experiment as well as taking off-centre signal due

to misalignment into the analysis. This mathematical

treatment is necessary since experimental deviations

from the simple mathematical formulism are satisfied

by these two physical properties being included in the

mathematical analysis.
A Amplitude of signal

B Term for finding diffusivity

D Off-centre component

m Heat loss parameter
3. Data reduction algorithms

3.1. Curve-fitting procedure

In order to extract values of thermal diffusivity a

curve-fitting algorithm must be used in conjunction with

Eq. (13). In this study the Levenberg–Marquardt algo-

rithm is used. However care must be taken to avoid trap-

ping the algorithm in local minima. Careful choice of

starting values are necessary, as the parameter estimates

used by the Levenberg–Marquardt algorithm may repre-

sent a local minimum in the sum of squared residualsP
ie
2
i .

Initial guesses for the parameters can be found by a

polynomial fit on the experimental data and this has

been found to be a reliable starting point for the full

curve-fitting algorithm. In order to fulfil this criterion

equation (13) needs to be simplified into a product of

exponentials and this is achieved by approximating the

Bessel factor to an exponential term. The power series

for the exponential and Bessel terms are very similar

over a range of values for the arguments of both terms:

I0 0,
1

t

� �
¼

X t�2n

ð22nÞðn!Þ2

" #
ð14Þ

exp
1

t2

� �
¼

X t�2n

ðn!Þ

� �
ð15Þ
and an approximate substitution can be made:

I0
C
t

� �
� exp

D
t2

� �
ð16Þ

where D ¼ C2

4
.

The exponential approximation for the Bessel func-

tion as described in Eq. (16) is satisfied for a range of

C values. This range of values was found by fitting the

Bessel and exponential terms respectively, until they no

longer agreed with the condition described in Eq. (16).

The range of values for which the parameters C and D

satisfy the condition in Eq. (16) are 0.0001 < C < 0.1

and 2.5 · 10�9 < D < 2.5 · 10�3. These values found

for the parameters C and D over which the approxima-

tion is valid, correspond to thermal diffusivity for nearly

all known solid materials and for a transient time re-

corded up to 1s. For example the off centre detection

distance is usually 0.25mm and the radius of the annulus

is given as 3.3mm. Thus the substitution for the Bessel

function holds for a range of thermal diffusivities from

4 · 10�6m2s�1 to 4 · 10�3m2s�1.

Using the exponential substitution for the Bessel

function equation (13) becomes.

T ðtÞ � A
t
exp �B

t

� �
exp½�vt	 exp D

t2

� �
ð17Þ

The natural logarithm is then applied along Eq. (17) and

this has the effect of simplifying the equation to a poly-

nomial form.

logetT ðtÞ � logeðAÞ �
B
t
� mt þ D

t2
ð18Þ

The polynomial-fitting procedure is then used to fit

this equation to the data to generate initial guesses for

the four parameters for the Levenberg–Marquardt algo-

rithm. The parameters can be interpreted physically as:
The extracted parameters from the polynomial fit

constitute initial guesses for the non-linear fit. These ini-

tial guesses are then used in the Levenberg–Marquardt

algorithm. This algorithm revises the initial guesses using

the sum of squared residuals. The final outcome of the

algorithm provides the user with the four fitted parame-

ters. The most important parameter is the B parameter,

which provides the user with the thermal diffusivity.

3.2. Determination of the radius of the annulus

In order to determine the radius of the annulus, the

active element of a CCD camera was substituted for



Fig. 4. The mean path of the beam profile is shown at the right.
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Fig. 5. Curve-fit using the simple, ideal expression.
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the sample and the laser attenuated. Since the annulus

was larger than the CCD element, only part of the annu-

lus was captured. An alternative would have been to use

image reduction optics but this could have introduced

errors if the demagnification was not known accurately.

Fig. 4 shows a typical captured arc. The (xi,yi) coor-

dinates for the arc are extracted using image-processing

algorithms. These image-processing algorithms are

based on digitising the bitmap image so that the coordi-

nate profile for the annular beam can be stored. The

coordinates for the beam are then analysed using a mul-

tiple linear regression.

The multiple linear algorithm is designed to extract

the radius and centre point of the circle from the annular

arc. The implementation of the algorithm requires that

the equation of a circle be parameterised and the centre

point of the circle be defined as (x0,y0). The parameteri-

sation for the equation of a circle leads to the following

substitutions. Defining

z ¼ x2 þ y2, b ¼ �2x0, c ¼ �2y0, a ¼ x20 þ y20 � r2

the circle becomes

zþ bxþ cy þ a ¼ 0 ð19Þ

Multiple linear regression is used to fit a circle centre

(x0,y0) and radius r to the observed annular arc. Thus

we wish to minimise

P ¼
Xn

i¼1
½zi þ aþ bxi þ cyi	

2 ð20Þ

Note that a, b, and c are unknown constants while all xi,

yi are given from the measured arc. To obtain the least

squares fit the function P is differentiated for a, b, and

c and their expressions are set equal to zero, so as to ex-

tract the minimum value. Finally the unknown coeffi-

cients a, b and c can then be obtained by solving the

linear equations and a value for the radius and centre

point (x0,y0) can be obtained.
4. Results and discussion

In order to demonstrate the improvement in fitting

experimental data to the theoretical expressions a typical

time resolved measurement for copper is shown in Fig. 5

together with a fitted curve of the form of Eq. (4), that is
without taking account of heat losses and non-centred

detection.

Several features can be identified with the additional

terms used in this study. Firstly the peak of the thermal

transient is shifted due to off-centre detection. Essen-

tially the ideal equation assumes that the components

of the thermal wave generated by the annular heating ar-

rive at the detection point simultaneously. This, in prac-

tical terms is difficult to guarantee. The second feature is

the premature drop in temperature at the detection area

due to the heat loss mechanisms described earlier, this

also has the effect of shifting the maximum peak position

of the thermal transient. Fig. 5 demonstrates that mea-

surements using the ideal theory, that rely on determina-

tion of the time to reach the peak temperature or the

time lapse between predetermined temperature values

could introduce errors if these phenomena are not ac-

counted for experimentally.

Fig. 6 shows the same experimental data with a curve

fitted using the algorithm containing the correction

terms in Eq. (13). The value for thermal diffusivity ex-

tracted from the fit is in good agreement with quoted

values. In this case no subjective decision is used to

determine which data points are used in the calculation

and the complete data set is used.

When re-examining Eq. (13) it should be pointed out

that the parameter B has a radius-squared term, that is

the radius found for the annular beam needs to be highly

accurate since the Levenberg–Marquardt fitting routine

provides an empirical value for this parameter. The soft-
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ware approach described above shows the steps required

for evaluating the radius and centre point of an annular

arc. It also provides pixel accuracy and is more reliable

than measuring the radius by hand. This method for

measuring the radius can be applied when it is difficult

or time consuming to form a perfect annular profile on

a CCD camera. If a full annular beam is captured by

the camera a direct measurement of the annulus can

be made without the need of the circle fitting algorithms.

Table 1 shows diffusivity values obtained from three

different metal foils, compared with values taken from

literature [18] and compared with values obtained when

the same samples were measured using a different tech-

nique, the conventional laser flash method. There is

good agreement between all the values.
5. Conclusions

This paper describes the mathematics and algorithms

required to account for non-ideal experimental condi-

tions in the converging wave method of thermal diffusiv-

ity measurement. These investigations showed that the

non-centred detection and the heat losses which occur

naturally in the experiment were the two main causes

of deviation from the ideal curve. Thus having under-

stood the nature of the non-ideal conditions occurring

in the experiment, a mathematical development of the

ideal equation was used to account for these physical

conditions.

An expression was used to account for the off-centre

components, using a Bessel function solution. Compar-

ison with experimental data showed that this could ac-

count for an apparent shift in the peak of the thermal

transient resulting in a potential error in thermal diffu-

sivity measurement.
Heat loss (by radiation and convection) was also

shown to be a potential source of error in experimental

measurements. It was shown that a Stefan–Boltzmann

expression for radiation and a Newton�s law of cooling

term could be added to the ideal equation to describe

these loss mechanisms.

The final derived equation was compared to experi-

mental data using curve-fitting procedures. The main

curve-fitting algorithm used was the Levenberg–Marqu-

ardt. Good initial guesses are required for optimal usage

of the Levenberg–Marquardt algorithm. It was found

that this is necessary since if the initial guesses provided

are poor they can lead to a local minimum. The equation

was arranged in polynomial form and a linear fit pro-

vided the initial guesses for input into the Levenberg–

Marquardt algorithm. With this approach accurate

values of thermal diffusivity were derived for various

materials without using any subjective selection of the

data set.
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